Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1990 Jul;87(14):5387-91.

Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter.

Author information

  • 1Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, Köln, Federal Republic of Germany.


The genetic fine structure of cis-acting sequences previously shown to be necessary for light-regulated expression in the promoter of the parsley (Petroselinum crispum) chalcone synthase gene was analyzed. Site-directed mutations and changes in spacing between cis elements were measured in transient expression assays in parsley protoplasts. Clustered point mutations allowed assignment of functional borders. Single-base substitutions within a highly conserved cis element (box II/G box) defined a critical core of seven bases, 5'-ACGTGGC-3'. It is functionally equivalent to a second sequence-related element (box III), which could replace box II in an orientation-dependent manner. The activity of box II required the presence of another juxtaposed element (box I) at a defined distance. No distance requirement was observed between the two large separable promoter regions known to independently confer light-regulated expression. These data support our hypothesis that a cis-acting sequence that is present in a limited number of diversely regulated plant genes gains its functional capacity and specificity by combinatorial diversity involving flanking partner elements.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk