Format

Send to

Choose Destination
See comment in PubMed Commons below
J Vasc Surg. 2014 Jan;59(1):210-9. doi: 10.1016/j.jvs.2013.03.004. Epub 2013 May 24.

Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis.

Author information

  • 1Service of Cardiovascular Surgery, Geneva University Hospital, University of Geneva, Faculty of Medicine, Geneva, Switzerland; Department of Pediatric Cardiac Surgery, Poznań University of Medical Sciences, Poznań, Poland.
  • 2Service of Cardiovascular Surgery, Geneva University Hospital, University of Geneva, Faculty of Medicine, Geneva, Switzerland.
  • 3School of Pharmaceutical Sciences University of Lausanne, University of Geneva, Geneva, Switzerland.
  • 4Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
  • 5Service of Cardiovascular Surgery, Geneva University Hospital, University of Geneva, Faculty of Medicine, Geneva, Switzerland. Electronic address: beat.walpoth@hcuge.ch.

Abstract

OBJECTIVE:

There is a continuous search for shelf-ready small-caliber vascular prostheses with satisfactory early and late results. Biodegradable scaffolds, repopulated by recipient's cells regenerating a neovessel, can be a suitable option for adult and pediatric, urgent and elective cardiovascular procedures.

METHODS:

This was a short-term experimental assessment of a new biodegradable vascular prosthesis for arterial replacement in the pig. Eleven pigs underwent bilateral carotid artery replacement with biodegradable electrospun poly-ε-caprolactone (PCL) nanofiber prostheses (internal diameter, 4 mm; length, 5 cm); or expanded polytetrafluoroethylene (ePTFE) prostheses as control. Perioperative anticoagulation was achieved with intravenous heparin (double baseline activated clotting time). Postoperatively, until conclusion of the study at 1 month, animals received aspirin and clopidogrel daily. Transit time flow was measured intraoperatively and at sacrifice. Doppler ultrasound (1 and 4 weeks) and a selective carotid angiography (4 weeks) were performed to assess patency. All explanted grafts were analyzed by histology, morphometry, and scanning electron microscopy in order to study graft-host interaction.

RESULTS:

Surgical handling and hemostasis of the new prostheses were excellent. Patency rate was 78% (7/9) for PCL grafts, compared with 67% (4/6) for ePTFE grafts. Transit time flow and Doppler ultrasound showed no significant changes in flow and velocity or diameter over time in both groups. Both prostheses showed no detectable in vivo compliance as compared with native carotid artery. Percent neoendothelialization was 86% for PCL and 58% for ePTFE grafts (P = .008). Neointima formation was equal in both grafts. More adventitial infiltration of macrophages, myofibroblasts, and capillaries was seen in PCL grafts with a milder foreign-body reaction when compared with ePTFE implants. Both grafts showed similar endoluminal thrombus formation.

CONCLUSIONS:

Biodegradable, electrospun PCL grafts showed good surgical and mechanical properties, no aneurysm formation, and similar short-term patency compared with ePTFE grafts. Rapid endothelialization and cell ingrowth confirms favorable PCL graft-recipient biological interaction. Despite good early results, long-term follow-up is required before clinical application.

Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk