Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 May 1;8(5):e62569. doi: 10.1371/journal.pone.0062569. Print 2013.

Continuing fragmentation of a widespread species by geographical barriers as initial step in a land snail radiation on crete.

Author information

  • 1Department of Chemical Ecology, University of Bielefeld, Bielefeld, Germany.

Abstract

The phylogeographic structure of the land snail Xerocrassa mesostena on Crete inferred from AFLP markers and mitochondrial cox1 sequences can be explained by three mechanisms: gene flow restriction, population expansion and leptokurtic dispersal. Gene flow restriction by geographic barriers caused subdivision of the gene pool into distinct clusters. Population expansion was probably facilitated by deforestation of Crete in the postglacial. Newly available areas were colonized by leptokurtic dispersal, i.e. slow active expansion resulting in isolation by distance within the clusters and occasional long distance dispersal events that resulted in departures from the isolation by distance model. Less than one percent of the AFLP markers show correlations with environmental variables. Random phylogeographic breaks in the distribution of the mitochondrial haplotype groups indicate that single locus markers, especially mitochondrial DNA, might result in a misleading picture of the phylogeographic structure of a species. Restriction of gene flow between metapopulations caused by geographical barriers can interact with sexual selection resulting in the differentiation of these metapopulations into separate species without noticeable ecological differentiation. Evidence for gene flow between parapatrically distributed evolutionary units representing different stages of the speciation process suggests that the ongoing process of fragmentation of the X. mesostena complex might be an example for parapatric speciation. The lack of ecological differentiation between these units confirms theoretical predictions that divergent selection for local adaptation is not required for rapid speciation.

PMID:
23658748
[PubMed - indexed for MEDLINE]
PMCID:
PMC3641037
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk