Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Oncol. 2013 Aug;7(4):812-25. doi: 10.1016/j.molonc.2013.04.003. Epub 2013 Apr 17.

Reprogramming of the HepG2 genome by long interspersed nuclear element-1.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA.

Abstract

Long Interspersed Nuclear Element-1 (LINE-1 or L1) is an autonomous, mobile element within the human genome that transposes via a "copy and paste" mechanism and relies upon L1-encoded endonuclease and reverse transcriptase (RT) activities to compromise genome integrity. L1 has been implicated in various forms of cancer, but its role in the regulation of the oncogenic phenotype is not understood. The present studies were conducted to evaluate mechanisms of genetic regulatory control in HepG2 cells by human L1, or a D702Y mutant deficient in RT activity, and their influence on cellular phenotype. Forced expression of synthetic L1 ORF1p and ORF2p was associated with formation of cytoplasmic foci and minor association with the nuclear compartment. While de novo L1 mobilizations were only identified in cells expressing wild type L1, and were absent in the D702Y mutant, changes in gene expression profiles involved RT dependent as well as RT independent mechanisms. Synthetic L1 altered the expression of 24 in silico predicted genetic targets; ten of which showed RT-dependence, ten RT-independence, and four reciprocal regulatory control by both wild type and RT mutant. Of five targets examined, only VCAM1 and PTPRB colocalized with newly retrotransposed wild type L1. Biological discretization to partition patterns of gene expression into unique frequencies identified adhesion, inflammation, and cellular metabolism as key processes targeted for molecular interference with disruption of epithelial-to-mesenchymal programming seen irrespective of the RT phenotype. These findings establish L1 as a key regulator of genome plasticity and EMT via mechanisms independent of RT activity.

Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

KEYWORDS:

Epithelial-to-mesenchymal transition; Genetic reprogramming; Long interspersed nuclear element-1; Retrotransposons; Reverse transcriptase

PMID:
23648019
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk