Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2013 May 15;135(19):7194-204. doi: 10.1021/ja3122526. Epub 2013 May 2.

Nonheme iron-mediated amination of C(sp3)-H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations.

Author information

  • 1Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.


The 7-coordinate complex [Fe(qpy)(MeCN)2](ClO4)2 (1, qpy = 2,2':6',2″:6″,2''':6''',2''''-quinquepyridine) is a highly active nonheme iron catalyst for intra- and intermolecular amination of C(sp(3))-H bonds. This complex effectively catalyzes the amination of limiting amounts of not only benzylic and allylic C(sp(3))-H bonds of hydrocarbons but also the C(sp(3))-H bonds of cyclic alkanes and cycloalkane/linear alkane moieties in sulfamate esters, such as those derived from menthane and steroids cholane and androstane, using PhI═NR or "PhI(OAc)2 + H2NR" [R = Ts (p-toluenesulfonyl), Ns (p-nitrobenzenesulfonyl)] as nitrogen source, with the amination products isolated in up to 93% yield. Iron imide/nitrene intermediates [Fe(qpy)(NR)(X)](n+) (CX, X = NR, solvent, or anion) are proposed in these amination reactions on the basis of experimental studies including ESI-MS analysis, crossover experiments, Hammett plots, and correlation with C-H bond dissociation energies and with support by DFT calculations. Species consistent with the formulations of [Fe(qpy)(NTs)2](2+) (CNTs) and [Fe(qpy)(NTs)](2+) (C) were detected by high-resolution ESI-MS analysis of the reaction mixture of 1 with PhI═NTs (4 equiv). DFT calculations revealed that the reaction barriers for H-atom abstraction of cyclohexane by the ground state of 7-coordinate CNTs and ground state of C are 15.3 and 14.2 kcal/mol, respectively, in line with the observed high activity of 1 in catalyzing the C-H amination of alkanes under mild conditions.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk