Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Cycle. 2013 May 15;12(10):1598-604. doi: 10.4161/cc.24741. Epub 2013 Apr 25.

Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model.

Author information

  • 1Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Abstract

Cyclin-dependent kinase inhibitors (CDKIs) p21(Cip1/Waf1) (p21) and p27(Kip1) (p27) play a determining role in cell cycle progression by regulating CDK activity; however, p21 role in prostate cancer (PCa) is controversial. Whereas p21 upregulation by anticancer agents causes cell cycle arrest in various PCa cell lines, elevated p21 levels have been associated with higher Gleason score, poor survival and increased PCa recurrence. These conflicting findings suggest that more studies are needed to examine p21 role in PCa. Herein, employing genetic approach, transgenic mice harboring p21/Cdkn1a homozygous deletion (p21(-/-)) were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice to characterize in vivo consequences of p21 deletion on prostate tumorigenesis. Lower urogenital tract weight of p21(-/-)/TRAMP mice was significantly lower than those of p21(+/-)/TRAMP and TRAMP mice. Histopathology further supported these observations, showing less aggressiveness in prostates of p21(-/-)/TRAMP. Furthermore, a significantly higher incidence of low-grade prostatic intraepithelial lesions (PIN) with a concomitant reduction in adenocarcinoma incidence was observed in p21(-/-)/TRAMP mice compared with TRAMP mice. In addition, whereas TRAMP mice showed the presence of poorly differentiated adenocarcinoma lesions, no such lesions were observed in p21/TRAMP transgenic mice. Specifically, there was a significant reduction in the severity of lesions in both p21(-/-)/TRAMP and p21(+/-)/TRAMP mice compared with TRAMP mice. Together, our data showed that p21 deletion reduces prostate tumorigenesis by slowing-down progression of PIN (pre-malignant) to adenocarcinoma (malignant), suggesting that intact p21 expression is associated with PCa aggressiveness, while its decreased levels may in fact confer protection against prostate tumorigenesis.

KEYWORDS:

TRAMP; cell cycle; p21 knockdown; prostate cancer

PMID:
23624841
[PubMed - indexed for MEDLINE]
PMCID:
PMC3680539
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Landes Bioscience Icon for PubMed Central
    Loading ...
    Write to the Help Desk