Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Mater. 2013 Jul;12(7):641-6. doi: 10.1038/nmat3629. Epub 2013 Apr 28.

Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain.

Author information

  • 1Unité Mixte de Physique CNRS/Thales, 1 av. Fresnel, 91767 Palaiseau & Université Paris-Sud, 91405 Orsay, France.

Abstract

Multiferroics are compounds that show ferroelectricity and magnetism. BiFeO3, by far the most studied, has outstanding ferroelectric properties, a cycloidal magnetic order in the bulk, and many unexpected virtues such as conductive domain walls or a low bandgap of interest for photovoltaics. Although this flurry of properties makes BiFeO3 a paradigmatic multifunctional material, most are related to its ferroelectric character, and its other ferroic property--antiferromagnetism--has not been investigated extensively, especially in thin films. Here we bring insight into the rich spin physics of BiFeO3 in a detailed study of the static and dynamic magnetic response of strain-engineered films. Using Mössbauer and Raman spectroscopies combined with Landau-Ginzburg theory and effective Hamiltonian calculations, we show that the bulk-like cycloidal spin modulation that exists at low compressive strain is driven towards pseudo-collinear antiferromagnetism at high strain, both tensile and compressive. For moderate tensile strain we also predict and observe indications of a new cycloid. Accordingly, we find that the magnonic response is entirely modified, with low-energy magnon modes being suppressed as strain increases. Finally, we reveal that strain progressively drives the average spin angle from in-plane to out-of-plane, a property we use to tune the exchange bias and giant-magnetoresistive response of spin valves.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk