Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2013 May;15(5):481-90. doi: 10.1038/ncb2738. Epub 2013 Apr 28.

ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death.

Author information

  • 1Center for Neuroscience, Aging, and Stem Cell Research, Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Abstract

Protein misfolding in the endoplasmic reticulum (ER) leads to cell death through PERK-mediated phosphorylation of eIF2α, although the mechanism is not understood. ChIP-seq and mRNA-seq of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), key transcription factors downstream of p-eIF2α, demonstrated that they interact to directly induce genes encoding protein synthesis and the unfolded protein response, but not apoptosis. Forced expression of ATF4 and CHOP increased protein synthesis and caused ATP depletion, oxidative stress and cell death. The increased protein synthesis and oxidative stress were necessary signals for cell death. We show that eIF2α-phosphorylation-attenuated protein synthesis, and not Atf4 mRNA translation, promotes cell survival. These results show that transcriptional induction through ATF4 and CHOP increases protein synthesis leading to oxidative stress and cell death. The findings suggest that limiting protein synthesis will be therapeutic for diseases caused by protein misfolding in the ER.

PMID:
23624402
[PubMed - indexed for MEDLINE]
PMCID:
PMC3692270
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk