Format

Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2013 Aug;61:502-11. doi: 10.1016/j.freeradbiomed.2013.04.012. Epub 2013 Apr 25.

Cyclooxygenase-2 in newborn hyperoxic lung injury.

Author information

  • 1Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
  • 2Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhlems-University, University Medical Center, Bonn, Germany.
  • 3Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43215, USA.
  • 4Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43215, USA. Electronic address: Lynette.Rogers@NationwideChildrens.org.

Abstract

Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2(+/+)), heterozygous (COX-2(+/-)), and homozygous (COX-2(-/-)) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2(-/-) pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD.

Copyright © 2013 Elsevier Inc. All rights reserved.

KEYWORDS:

Bronchopulmonary dysplasia; Cyclooxygenase-2; Hyperoxia; Prostaglandins

PMID:
23624331
[PubMed - indexed for MEDLINE]
PMCID:
PMC3752000
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk