Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Talanta. 2013 May 15;109:31-45. doi: 10.1016/j.talanta.2013.01.042. Epub 2013 Feb 4.

Storage of natural water samples and preservation techniques for pharmaceutical quantification.

Author information

  • 1INRA, Agrocampus Ouest, UMR1069 Sol Agro et hydrosysteme Spatialisation, Rennes, France.

Abstract

In order to perform a human and ecological risk assessment of pharmaceutical products (PPs) in natural waters, it is necessary to accurately quantify a broad variety of PPs at low concentrations. Although numerous currently implemented analytical methodologies, less is known about the preservation of PPs in natural water samples within the period before analysis (holding time, storage conditions). This paper is the first literature review about the stability of PPs in natural waters (surface and groundwaters) during sample storage. The current work focuses on a comparison of the performances of the available preservation techniques (filtration, container materials, storage temperature, preservative agents, etc.) for PPs in samples. All 58 reviewed PPs may be successfully stabilized during 7 days in surface waters by at least one appropriate methodology regarding temperature, acidic and non-acidic preservatives. When temperature is not a sufficient preservation parameter for some PPs (hormones and fluoxetine) its combination with the addition of chemical agents into the samples may prolong the integrity of the PPs during storage in surface water. There is a strong need to use standard protocols to assess and compare the stability of PPs in environmental water matrices during storage as well as during analytical preparation or analysis (European criteria 2002/657/EC). Since the stability of PPs during sample storage is a critical parameter that could call into question the quality of the data provided for the concentrations, the design of stability studies should rigorously take into account all critical parameters that could impact the concentrations of the PPs with time.

Copyright © 2013 Elsevier B.V. All rights reserved.

PMID:
23618138
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk