Damage to apparel layers and underlying tissue due to hand-gun bullets

Int J Legal Med. 2014 Jan;128(1):83-93. doi: 10.1007/s00414-013-0856-1. Epub 2013 Apr 19.

Abstract

Ballistic damage to the clothing of victims of gunshot wounds to the chest can provide useful forensic evidence. Anyone shot in the torso will usually be wearing clothing which will be damaged by the penetrating impact event and can reportedly be the source of some of the debris in the wound. Minimal research has previously been reported regarding the effect of bullets on apparel fabrics and underlying tissue. This paper examines the effect of ammunition (9 mm full metal jacket [FMJ] DM11 A1B2, 8.0 g; and soft point flat nose Remington R357M3, 10.2 g) on clothing layers that cover the torso (T-shirt, T-shirt plus hoodie, T-shirt plus denim jacket) and underlying structures represented by porcine thoracic wall (skin, underlying tissue, ribs). Impacts were recorded using a Phantom V12 high speed camera. Ejected bone debris was collected before wound tracts were dissected and measured; any debris found was recovered for further analysis. Size and mass of bony debris was recorded; fibre debris recovered from the wound and impact damage to fabrics were imaged using scanning electron microscopy (SEM). Remington R357M3 ammunition was characteristically associated with stellate fabric damage; individual fibres were less likely to show mushrooming. In contrast, 9 mm FMJ ammunition resulted in punch-out damage to fabric layers, with mushrooming of individual fibres being more common. Entry wound sizes were similar for both types of ammunition and smaller than the diameter of the bullet that caused them. In this work, the Remington R357M3 ammunition resulted in larger exit wounds due to the bullet construction which mushroomed. That fabric coverings did not affect the amount of bony debris produced is interesting, particularly given there was some evidence that apparel layers affected the size of the wound. Recent work has suggested that denim (representative of jeans) can exacerbate wounding caused by high-velocity bullet impacts to the thigh when the bullet does not impact the femur. That more bony debris was caused by Remington R357M3 rather than 9 mm FMJ ammunition was not surprising given the relative constructions of these two bullets, and is of interest to medical practitioners.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bone and Bones / pathology
  • Clothing*
  • Cotton Fiber
  • Disease Models, Animal
  • Firearms*
  • Humans
  • Microscopy, Electron, Scanning
  • Swine
  • Thoracic Injuries / pathology*
  • Thorax / pathology
  • Wounds, Gunshot / pathology*