Format

Send to:

Choose Destination
See comment in PubMed Commons below
Sci Rep. 2013;3:1598. doi: 10.1038/srep01598.

Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals.

Author information

  • 1State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, PR China.

Abstract

Yttrium fluoride YF3:Er(3+) and yttrium oxyfluoride YOF:Er(3+) submicron-crystals with mid-infrared fluorescent emissions were synthesized for the first time. The rhombohedral phase YOF submicron-crystals were synthesized by the crystalline phase transformation from pure orthorhombic YF3 submicron-crystals, which were prepared by co-precipitation method. The composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM), which showed that submicron-crystals were quasi-spherical with the particle size of ~400 nm. A novel formation mechanism of YOF submicron-crystals was proposed. Photoluminescence (PL) spectra indicated the 2.7 μm emission of Er(3+) has remarkably enhanced with the increase of Er(3+) doping concentration, and a novel dynamic circulatory energy transfer mechanism was proposed. Fourier transform infrared spectra (FTIR) were used to demonstrate the change of hydroxyl content. These oxyfluoride submicron-crystals provide a new material for nano/submicron-crystals-glass composites, and open a brand new field for the realization of mid-infrared micro/nano-lasers.

PMID:
23604234
[PubMed - indexed for MEDLINE]
PMCID:
PMC3631945
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk