Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2013 May 21;47(10):5419-24. doi: 10.1021/es400129s. Epub 2013 Apr 30.

Arsenic levels and speciation from ingestion exposures to biomarkers in Shanxi, China: implications for human health.

Author information

  • 1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.

Abstract

Chronic exposure to arsenic (As) threatens human health. To systematically understand the health risks induced by As ingestion, we explored water and diet contributions to As exposure, and compared As in biomarkers and the arsenicosis in a geogenic As area in China. In this study, high percentages of water (77% of n = 131 total samples), vegetables (92%, n = 120), cereals (32%, n = 25), urine (70%, n = 99), nails (76%, n = 176), and hair (62%, n = 61) contained As higher than the acceptable levels. Dietary As contributed 92% of the average daily dose (ADD) when the water As concentration was less than 10 μg/L, for which 5 out of 30 examined participants were diagnosed with arsenicosis symptoms. The distinct positive correlation between ADD and As concentrations in urine, nails, and hair suggests different applicability for these biomarkers. Methylated As as the predominant urinary As species confirms that the ingested inorganic As is methylated and is excreted through urine. In situ microdistribution and speciation analysis indicates that As is mainly associated with sulfur in nails and hair. Nails, rather than hair and urine, could be used as a proper biomarker for arsenicosis. High ADD from the environment and low excretion could result in As toxicity to humans.

PMID:
23600923
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk