Format

Send to:

Choose Destination
See comment in PubMed Commons below
Talanta. 2013 Mar 15;106:321-7. doi: 10.1016/j.talanta.2012.11.015. Epub 2012 Nov 16.

Restricted access magnetic core-mesoporous shell microspheres with C8-modified interior pore-walls for the determination of diazepam in rat plasma by LC-MS.

Author information

  • 1Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.

Abstract

In this study, a novel enrichment technique based on magnetic core-mesoporous shell microspheres with C8-modified interior pore-walls (C8-Fe₃O₄@mSiO₂) was successfully developed for the determination of diazepam in rat plasma by LC-MS. Due to the unique properties of the synthesized C8-Fe₃O₄@mSiO₂ microspheres (C8-modified magnetic mesoporous microsphere), small drug molecules like diazepam can enter the mesopore channels and be efficiently absorbed through hydrophobic interaction by interior C8-groups (Octyl functional groups). Large molecules like proteins are excluded from the mesopore channels as a result of size exclusion effect, leading to direct extraction of drug molecules from protein-rich biosmaples such as plasma without any other pretreatment procedure. Moreover, diazepam adsorbed C8-Fe₃O₄@mSiO₂ microspheres could be simply and rapidly isolated through placing a magnet on the bottom of container, and then diazepam could be easily eluted from C8-Fe₃O₄@mSiO₂ microspheres for further LC-MS analysis. Extraction conditions such as amounts of C8-Fe₃O₄@mSiO₂ microspheres added, adsorption time, elution solvent and elution time were investigated. Method validations including linear range, the limit of detection, precision, and recovery were also studied. The results indicated that the proposed method based on C8-Fe₃O₄@mSiO₂ microspheres was simple and accurate for the analysis of diazepam in the rat plasma. And it will provide new ideas for analyzing plasma concentration and pharmacokinetics of similar drugs.

Copyright © 2012 Elsevier B.V. All rights reserved.

PMID:
23598135
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk