Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations

Phys Chem Chem Phys. 2013 May 28;15(20):7731-9. doi: 10.1039/c3cp00116d. Epub 2013 Apr 18.

Abstract

Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ligands
  • Models, Molecular
  • Molecular Dynamics Simulation*
  • Molecular Structure
  • Proteins / chemistry*
  • Solvents / chemistry
  • Surface Properties

Substances

  • Ligands
  • Proteins
  • Solvents