Display Settings:

Format

Send to:

Choose Destination
Cell Struct Funct. 2013;38(1):123-34. Epub 2013 Apr 17.

Importance of dimer formation of myocardin family members in the regulation of their nuclear export.

Author information

  • 1Department of Neuroscience, Osaka University Graduate School of Medicine, Japan. khayashi@nbiochem.med.osaka-u.ac.jp

Abstract

Myocardin (Mycd) family members function as a transcriptional cofactor for serum response factor (SRF). Dimer formation is necessary to exhibit their function, and the coiled-coil domain (CC) plays a critical role in their dimerization. We have recently revealed a detailed molecular mechanism for their Crm1 (exportin1)-mediated nuclear export. Here, we found other unique significances of the dimerization of Mycd family members. Introduction of mutations in the CC of myocardin-related transcription factor A (MRTF-A) and truncated Mycd resulted in significant decreases in their cytoplasmic localization and increases in their nuclear localization. In accordance with such subcellular localization changes, their binding to Crm1 were reduced. These results indicate that the dimerization of Mycd family members is necessary for their Crm1-mediated nuclear export. We have recently found that the N-terminal region of Mycd consisting of 128 amino acids (Mycd N128) self-associates to Mycd via the central basic domain (CB), resulting in masking the Crm1-binding site. Such self-association of MRTF-A would be unlikely. In this study, we also revealed that the dimerization of Mycd was also necessary for this self-association. Wild-type Mycd activated SRF-mediated transcription more potently than Mycd lacking the Mycd N128 (Mycd ΔN128) did. These results suggest two possible functions of the Mycd N128: 1) stabilization of Mycd dimer to enhance SRF-mediated transcription and 2) positive regulation of the transactivation ability of Mycd. These findings provide a new insight into the functional regulation of Mycd family members.

PMID:
23594864
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk