Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2013 May 10;434(3):600-5. doi: 10.1016/j.bbrc.2013.03.123. Epub 2013 Apr 11.

Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2.

Author information

  • 1College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea.


Toll-like receptors (TLRs) are key pattern-recognition receptors that recognize invading pathogens and non-microbial endogenous molecules to induce innate and adaptive immune responses. Since activation of TLRs is deeply implicated in the pathological progress of autoimmune diseases, sepsis, metabolic diseases, and cancer, modulation of TLR activity is considered one of the most important therapeutic approaches. Lipopolysaccharide (LPS), an endotoxin of gram-negative bacteria, is a well-known agonist for TLR4 triggering inflammation and septic shock. LPS interacts with TLR4 through binding to a hydrophobic pocket in myeloid differentiation 2 (MD2), a co-receptor of TLR4. In this study, we showed that sulforaphane (SFN) interfered with the binding of LPS to MD2 as determined by in vitro binding assay and co-immunoprecipitation of MD2 and LPS in a cell system. The inhibitory effect of SFN on the interaction of LPS and MD2 was reversed by thiol supplementation with N-acetyl-L-cysteine or dithiothreitol showing that the inhibitory effect of SFN is dependent on its thiol-modifying activity. Indeed, micro LC-MS/MS analysis showed that SFN preferentially formed adducts with Cys133 in the hydrophobic pocket of MD2, but not with Cys95 and Cys105. Molecular modeling showed that SFN bound to Cys133 blocks the engagement of LPS and lipid IVa to hydrophobic pocket of MD2. Our results demonstrate that SFN interrupts LPS engagement to TLR4/MD2 complex by direct binding to Cys133 in MD2. Our data suggest a novel mechanism for the anti-inflammatory activity of SFN, and provide a novel target for the regulation of TLR4-mediated inflammatory and immune responses by phytochemicals.

Copyright © 2013 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk