Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2013 Jun 15;73(12):3737-48. doi: 10.1158/0008-5472.CAN-12-3537. Epub 2013 Apr 10.

NF-κB regulates radioresistance mediated by β1-integrin in three-dimensional culture of breast cancer cells.

Author information

  • 1Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley.


β1-integrin induction enhances breast cancer cell survival after exposure to ionizing radiation (IR), but the mechanisms of this effect remain unclear. Although NF-κB initiates prosurvival signaling pathways post-IR, the molecular function of NF-κB with other key elements in radioresistance, particularly with respect to extracellular matrix-induced signaling, is not known. We discovered a typical NF-κB-binding site in the β1-integrin promoter region, indicating a possible regulatory role for NF-κB. Using three-dimensional laminin-rich extracellular matrix (3D lrECM) culture, we show that NF-κB is required for β1-integrin transactivation in T4-2 breast cancer cells post-IR. Inhibition of NF-κB reduced clonogenic survival and induced apoptosis and cytostasis in formed tumor colonies. In addition, T4-2 tumors with inhibition of NF-κB activity exhibit decreased growth in athymic mice, which was further reduced by IR with downregulated β1-integrin expression. Direct interactions between β1-integrin and NF-κB p65 were induced in nonmalignant breast epithelial cells, but not in malignant cells, indicating context-specific regulation. As β1-integrin also activates NF-κB, our findings reveal a novel forward feedback pathway that could be targeted to enhance therapy.

©2013 AACR.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk