Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2013 Jun 15;304(12):E1303-13. doi: 10.1152/ajpendo.00582.2012. Epub 2013 Apr 9.

Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats.

Author information

  • 1Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Newark, New Jersey;

Abstract

We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca(2+) transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca(2+) absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca(2+) transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca(2+) transport rate as well as in expression of intestinal and renal Ca(2+) transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca(2+) transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca(2+) transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca(2+) and vitamin D deficiency.

KEYWORDS:

FGF23; bone; growth; intestine; kidney; parathyroid hormone; vitamin D

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk