Format

Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2013 Oct;110(10):2697-705. doi: 10.1002/bit.24923. Epub 2013 Apr 22.

Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells.

Author information

  • 1Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.

Abstract

In this article, we investigate the application of contactless high frequency ultrasound microbeam stimulation (HFUMS) for determining the invasion potential of breast cancer cells. In breast cancer patients, the finding of tumor metastasis significantly worsens the clinical prognosis. Thus, early determination of the potential of a tumor for invasion and metastasis would significantly impact decisions about aggressiveness of cancer treatment. Recent work suggests that invasive breast cancer cells (MDA-MB-231), but not weakly invasive breast cancer cells (MCF-7, SKBR3, and BT-474), display a number of neuronal characteristics, including expression of voltage-gated sodium channels. Since sodium channels are often co-expressed with calcium channels, this prompted us to test whether single-cell stimulation by a highly focused ultrasound microbeam would trigger Ca(2+) elevation, especially in highly invasive breast cancer cells. To calibrate the diameter of the microbeam ultrasound produced by a 200-MHz single element LiNbO3 transducer, we focused the beam on a wire target and performed a pulse-echo test. The width of the beam was ∼17 µm, appropriate for single cell stimulation. Membrane-permeant fluorescent Ca(2+) indicators were utilized to monitor Ca(2+) changes in the cells due to HFUMS. The cell response index (CRI), which is a composite parameter reflecting both Ca(2+) elevation and the fraction of responding cells elicited by HFUMS, was much greater in highly invasive breast cancer cells than in the weakly invasive breast cancer cells. The CRI of MDA-MB-231 cells depended on peak-to-peak amplitude of the voltage driving the transducer. These results suggest that HFUMS may serve as a novel tool to determine the invasion potential of breast cancer cells, and with further refinement may offer a rapid test for invasiveness of tumor biopsies in situ.

Copyright © 2013 Wiley Periodicals, Inc.

KEYWORDS:

calcium fluorescence imaging; cell stimulation; high frequency ultrasound microbeam; invasiveness, breast cancer cells; live-cell imaging; mechanotransduction

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk