Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2013 Apr 24;135(16):6100-6. doi: 10.1021/ja312015j. Epub 2013 Apr 15.

Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12.

Author information

  • 1Department of Chemistry, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.


A novel iron perovskite YCu3Fe4O12 was synthesized under high pressure and high temperature of 15 GPa and 1273 K. Synchrotron X-ray and electron diffraction measurements have demonstrated that this compound crystallizes in the cubic AA'3B4O12-type perovskite structure (space group Im3, No. 204) with a lattice constant of a = 7.30764(10) Å at room temperature. YCu3Fe4O12 exhibits a charge disproportionation of 8Fe(3.75+) → 3Fe(5+) + 5Fe(3+), a ferrimagnetic ordering, and a metal-semiconductor-like transition simultaneously at 250 K, unlike the known isoelectronic compound LaCu3Fe4O12 that currently shows an intersite charge transfer of 3Cu(2+) + 4Fe(3.75+) → 3Cu(3+) + 4Fe(3+), an antiferromagnetic ordering, and a metal-insulator transition at 393 K. This finding suggests that intersite charge transfer is not the only way of relieving the instability of the Fe(3.75+) state in the A(3+)Cu(2+)3Fe(3.75+)4O12 perovskites. Crystal structure analysis reveals that bond strain, rather than the charge account of the A-site alone, which is enhanced by large A(3+) ions, play an important role in determining which of intersite charge transfer or charge disproportionation is practical.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk