Send to:

Choose Destination
See comment in PubMed Commons below
EMBO Rep. 2013 May;14(5):473-9. doi: 10.1038/embor.2013.39. Epub 2013 Apr 5.

SpoIIIE mechanism of directional translocation involves target search coupled to sequence-dependent motor stimulation.

Author information

  • 1Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier I & II, 34090 Montpellier, France.


SpoIIIE/FtsK are membrane-anchored, ATP-fuelled, directional motors responsible for chromosomal segregation in bacteria. Directionality in these motors is governed by interactions between specialized sequence-recognition modules (SpoIIIE-γ/FtsK-γ) and highly skewed chromosomal sequences (SRS/KOPS). Using a new combination of ensemble and single-molecule methods, we dissect the series of steps required for SRS localization and motor activation. First, we demonstrate that SpoIIIE/DNA association kinetics are sequence independent, with binding specificity being uniquely determined by dissociation. Next, we show by single-molecule and modelling methods that hexameric SpoIIIE binds DNA non-specifically and finds SRS by an ATP-independent target search mechanism, with ensuing oligomerization and binding of SpoIIIE-γ to SRS triggering motor stimulation. Finally, we propose a new model that provides an entirely new interpretation of previous observations for the origin of SRS/KOPS-directed translocation by SpoIIIE/FtsK.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk