Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2013 Jul;32(7):1290-301. doi: 10.1109/TMI.2013.2256464. Epub 2013 Apr 2.

Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating.

Author information

  • 1Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China.


In recent years Bregman iterative method (or related augmented Lagrangian method) has shown to be an efficient optimization technique for various inverse problems. In this paper, we propose a two-level Bregman Method with dictionary updating for highly undersampled magnetic resonance (MR) image reconstruction. The outer-level Bregman iterative procedure enforces the sampled k-space data constraints, while the inner-level Bregman method devotes to updating dictionary and sparse representation of small overlapping image patches, emphasizing local structure adaptively. Modified sparse coding stage and simple dictionary updating stage applied in the inner minimization make the whole algorithm converge in a relatively small number of iterations, and enable accurate MR image reconstruction from highly undersampled k-space data. Experimental results on both simulated MR images and real MR data consistently demonstrate that the proposed algorithm can efficiently reconstruct MR images and present advantages over the current state-of-the-art reconstruction approach.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk