Send to:

Choose Destination
See comment in PubMed Commons below
J Magn Reson. 2013 May;230:160-4. doi: 10.1016/j.jmr.2013.02.015. Epub 2013 Mar 14.

Proton-nitrogen-14 overtone two-dimensional correlation NMR spectroscopy of solid-sample at very fast magic angle sample spinning.

Author information

  • 1JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan.


(1)H-(14)N overtone (OT) heteronuclear multiple quantum coherence (HMQC) experiment at very fast magic angle spinning (MAS) is reported. The (14)N OT coherence is excited and reconverted by (14)N OT pulses at twice the (14)N Larmor frequency. The OT coherence is free from the first order quadrupolar broadening. MAS further removes the broadening due to chemical shift anisotropy (CSA). With a small 0.75 mm MAS rotor and coil system, very fast MAS up to 90 kHz and very strong rf field are achieved, enhancing the sensitivity of indirect (14)N OT observation via protons. In comparison with (1)H-(14)N double-quantum HMQC, an enhancement factor of 1.8 is obtained for glycine with the (14)N OT irradiation. The bandwidth in the (14)N OT dimension is limited due to long (14)N OT pulses.

Copyright © 2013 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk