Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale Res Lett. 2013 Mar 28;8(1):142. doi: 10.1186/1556-276X-8-142.

Optimized gold nanoshell ensembles for biomedical applications.

Author information

  • 1Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia. ivan.rukhlenko@monash.edu.

Abstract

: We theoretically study the properties of the optimal size distribution in the ensemble of hollow gold nanoshells (HGNs) that exhibits the best performance at in vivo biomedical applications. For the first time, to the best of our knowledge, we analyze the dependence of the optimal geometric means of the nanoshells' thicknesses and core radii on the excitation wavelength and the type of human tissue, while assuming lognormal fit to the size distribution in a real HGN ensemble. Regardless of the tissue type, short-wavelength, near-infrared lasers are found to be the most effective in both absorption- and scattering-based applications. We derive approximate analytical expressions enabling one to readily estimate the parameters of optimal distribution for which an HGN ensemble exhibits the maximum efficiency of absorption or scattering inside a human tissue irradiated by a near-infrared laser.

PMID:
23537206
[PubMed]
PMCID:
PMC3680205
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk