Format

Send to

Choose Destination
See comment in PubMed Commons below
J Environ Sci (China). 2012;24(8):1511-8.

Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua.

Author information

  • 1School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China. lixuanlwj@hotmail.com

Abstract

The effects of different cadmium (Cd) concentrations (0, 20, 60, and 100 micromol/L) on hydroponically grown Artemisia annua L. were investigated. Cd treatments applied for 0, 4, 12, 24, 72, 144, 216, and 336 hr were assessed by measuring the changes in photosynthetic pigments, electrolyte leakage, malondialdehyde (MDA) and antioxidants (ascorbic acid and glutathione), while the artemisinin content was tested after 0, 12, 144, 216, and 336 hr. A significant decrease was observed in photosynthetic pigment levels over time with increasing Cd concentration. Chlorophyll b levels were more affected by Cd than were chlorophyll a or carotenoid levels. The cell membrane was sensitive to Cd stress, as MDA content in all treatment groups showed insignificant differences from the control group, except at 12 hr treatment time. Ascorbic acid (AsA) content changed slightly over time, while glutathione (GSH) content took less time to reach a maximum as Cd concentration increased. Cd was found to promote synthesis and accumulation of artemisinin, especially at concentrations of 20 and 100 micromol/L. In conclusion, Cd stress can damage to photosynthetic pigments, and vigorously growing A. annua showed a strong tolerance for Cd stress. Appropriate amounts of added Cd aided synthesis and accumulation of artemisinin.

PMID:
23513695
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk