Send to:

Choose Destination
See comment in PubMed Commons below
Langmuir. 2013 Apr 16;29(15):4839-46. doi: 10.1021/la4000846. Epub 2013 Apr 2.

Carbon-binding designer proteins that discriminate between sp2- and sp3-hybridized carbon surfaces.

Author information

  • 1Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States.


Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically-driven manufacturing, biosensing, and bioimaging. Here, we identify a new set of carbon-binding peptides that vary in overall hydrophobicity and charge and engineer two of these sequences (Car9 and Car15) within the framework of E. coli thioredoxin 1 (TrxA). We develop purification schemes to recover the resulting TrxA derivatives in a soluble form and conduct a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbonaceous surfaces. Although equilibrium quartz crystal microbalance measurements show that TrxA::Car9 and TrxA::Car15 have similar affinities for sp(2)-hybridized graphitic carbon (Kd = 50 and 90 nM, respectively), only the latter protein is capable of dispersing carbon nanotubes. Further investigation by surface plasmon resonance and atomic force microscopy reveals that TrxA::Car15 interacts with sp(2)-bonded carbon through a combination of hydrophobic and π-π interactions but that TrxA::Car9 exhibits a cooperative mode of binding that relies on a combination of electrostatics and weaker π stacking. Consequently, we find that TrxA::Car9 binds equally well to sp(2)- and sp(3)-bonded (diamondlike) carbon particles whereas TrxA::Car15 is capable of discriminating between the two carbon allotropes. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk