Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2935-42. doi: 10.1021/am4001979. Epub 2013 Apr 2.

Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.

Author information

  • 1Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.


This paper investigates the effects of localized surface plasmon resonance (LSPR) in an inverted polymer/fullerene solar cell by incorporating Au and/or Ag nanoparticles (NPs) into the TiO2 buffer layer. Enhanced light harvesting via plasmonic resonance of metal NPs has been observed. It results in improved short-circuit current density (Jsc) while the corresponding open-circuit voltage (Voc) is maintained. A maximum power conversion efficiency of 7.52% is obtained in the case of introducing 30% Ag NPs into the TiO2, corresponding to a 20.7% enhancement compared with the reference device without the metal NPs. The device photovoltaic characteristics, photocurrent properties, steady-state and dynamic photoluminescences of active layer on metal NP-doped TiO2, and electric field profile in metal NP-doped TiO2 layers are systematically investigated to explore how the plasmonic effects of Au and/or Ag NPs influence the OSC performance.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk