Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomed Res Int. 2013;2013:150901. doi: 10.1155/2013/150901. Epub 2013 Feb 12.

Use of insulin to increase epiblast cell number: towards a new approach for improving ESC isolation from human embryos.

Author information

  • 1Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Medical School South, Level 3, Frome Road, Adelaide, SA 5005, Australia. jared.campbell@adelaide.edu.au

Abstract

Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5-10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4-8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk