Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2013 Apr 24;135(16):6242-56. doi: 10.1021/ja400914z. Epub 2013 Apr 10.

Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein-protein interface.

Author information

  • 1Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.

Abstract

We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between nuclear factor kappa B (NF-κB) essential modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NEMO binding domain (NBD) region of IKKβ contains the highest concentration of hot-spot residues, the strongest of which are W739, W741, and L742 (ΔΔG = 4.3, 3.5, and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot-spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot-spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot-spot residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small-molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between "pocket-forming" and "pocket-occupying" hot-spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces.

PMID:
23506214
[PubMed - indexed for MEDLINE]
PMCID:
PMC3680600
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk