Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Nutr Food Res. 2013 Jul;57(7):1123-34. doi: 10.1002/mnfr.201200549. Epub 2013 Mar 15.

Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit.

Author information

  • 1Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.

Abstract

SCOPE:

Tumor-associated macrophages (TAMs) have been shown to promote metastasis and malignancy. Pterostilbene, a natural stilbene isolated from blueberries, has been suggested for anti-cancer effects. Here, we explored the potential cancer stem cells (CSCs)/TAM modulating effects of pterostilbene in breast cancer.

METHODS AND RESULTS:

Using flowcytometric and Boyden chamber assay, we showed MCF7 and MDA-MB-231 cells cocultured with M2 TAMs exhibited increased percentage of CD44(+) /CD24(-) CSC population and migratory/invasive abilities. RT-PCR results showed that CD44(+) /CD24(-) cells expressed an increased level of HIF-1α, β-catenin, Twist1, and NF-κB and enhanced tumor sphere forming ability. Additionally, pterostilbene treatment dose dependently overcame M2 TAM-induced enrichment of CSCs and metastatic potential of breast cancer cells. Mechanistically, pterostilbene suppressed NFκB, Twist1, vimentin, and increased E-cadherin expression. Using siRNA technique, we demonstrated that pterostilbene-mediated NFκB downregulation was correlated to an increased amount of microRNA 448. Finally, pterostilbene-mediated suppression in tumorigenesis and metastasis was validated by noninvasive bioluminescence in mice bearing M2 TAM cocultured MDA-MB-231 tumor.

CONCLUSION:

Pterostilbene effectively suppresses the generation of CSCs and metastatic potential under the influence of M2 TAMs via modulating EMT associated signaling pathways, specifically NF-κB/miR488 circuit. Thus, pterostilbene could be an ideal anti-CSC agent in clinical settings.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

KEYWORDS:

Breast cancer stem cells; Epithelial-to-mesenchymal transition; Pterostilbene; Tumor-associated macrophages; miR448

PMID:
23504987
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk