Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2013 Mar 13;33(11):4947-57. doi: 10.1523/JNEUROSCI.3990-12.2013.

Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation.

Author information

  • 1Centre for Neuroscience Research, The University of Melbourne, Victoria 3010, Australia.

Abstract

The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in regulating CNS myelination. BDNF mutant mice exhibit a hypomyelinating phenotype, and BDNF exerts distinct effects upon oligodendroglial proliferation, differentiation, and myelination in vitro. To investigate the precise influence that BDNF exerts in regulating CNS myelination in vivo, we have generated conditional knock-out mice in which TrkB has been deleted specifically in oligodendrocytes. Deletion of TrkB disrupted normal oligodendrocyte myelination, resulting in a significant reduction in myelin protein expression and myelination of CNS white matter tracts during development. Importantly, conditional knock-out mice exhibited normal numbers of mature oligodendrocytes and normal numbers of myelinated axons; however, myelin thickness was significantly reduced during development. These data indicate that while TrkB expression in oligodendrocytes plays no role in the initial contact with axons, it exerts an important influence in subsequent stages to promote myelin ensheathment. The conditional knock-out mice also exhibited an increased density of oligodendrocyte progenitor cells (OPCs) in CNS white matter tracts. Concordant with these results, in vitro analyses using OPCs subjected to TrkB knockdown also revealed increased OPC proliferation. Our data suggested this effect was dependent upon TrkC and p75 expression. Thus, our data demonstrate that TrkB expression in oligodendroglia exerts a direct effect on oligodendrocytes to promote myelination and an indirect effect upon the OPC population, modifying their proliferative potential.

PMID:
23486965
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk