Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2013 Feb 25;21(4):3946-58. doi: 10.1364/OE.21.003946.

Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

Author information

  • 1Optoelectronics Research Centre, University of Southampton, SO17 1BJ, United Kingdom. coc@orc.soton.ac.uk

Abstract

The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 μm/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called "quill-effect", that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs- and ps-laser direct writing.

PMID:
23481930
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk