Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2013 Apr 9;52(14):2427-39. doi: 10.1021/bi301307f. Epub 2013 Mar 26.

Structural and kinetic study of an internal substrate binding site in dehaloperoxidase-hemoglobin A from Amphitrite ornata.

Author information

  • 1Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.


X-ray crystal structures of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata soaked with substrate, 2,4,6-tribromophenol (2,4,6-TBP), in buffer solvent with added methanol (MeOH), 2-propanol (2-PrOH), and dimethyl sulfoxide (DMSO) reveal an internal substrate binding site deep in the distal pocket above the α-edge of the heme that is distinct from the previously determined internal inhibitor binding site. The peroxidase function of DHP A has most often been studied using 2,4,6-trichlorophenol (2,4,6-TCP) as a substrate analogue because of the low solubility of 2,4,6-TBP in an aqueous buffer solution. Previous studies at low substrate concentrations pointed to the binding of substrate 2,4,6-TCP at an external site near the exterior heme β- or δ-edge as observed in the class of heme peroxidases. Here we report that the turnover frequencies of both substrates 2,4,6-TCP and 2,4,6-TBP deviate from Michaelis-Menten kinetics at high concentrations. The turnover frequency reaches a maximum in the range of 1400-1700 μM, with a decrease in rate at higher concentrations that is both substrate- and solvent-dependent. The X-ray crystal structure is consistent with the presence of an internal active site above the heme α-edge, in which the substrate would be oxidized in two consecutive steps inside the enzyme, followed by attack by H2O via a water channel in the protein. The physiological role of the internal site may involve interactions with any of a number of aromatic toxins found in benthic ecosystems where A. ornata resides.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk