Format

Send to:

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2013 Mar 18;52(6):3127-32. doi: 10.1021/ic302583a. Epub 2013 Mar 7.

Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation.

Author information

  • 1State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

Abstract

A flexible octacarboxylate ligand, tetrakis[(3,5-dicarboxyphenyl)oxamethyl]methane (H8X), has been used to construct a highly porous metal-organic framework (In2X)(Me2NH2)2(DMF)9(H2O)5 (1), which is comprised of octahedral and cuboctahedral cages and shows a rare (4,8)-connected scu topology. Gas adsorption studies of N2, H2 on the actived 1 at 77 K reveal a Langmuir surface area of 1707 m(2) g(-1), a BET surface area of 1555 m(2) g(-1), a total pore volume of 0.62 cm(3) g(-1), and a H2 uptake of 1.49 wt % at 1 bar and 3.05 wt % at 16 bar. CO2, CH4, and N2 adsorption studies at 195, 273, 285, and 298 K and also ideal adsorbed solution theory (IAST) calculations demonstrate that 1 has high selectivites of CO2 over CH4 and N2. The resulting framework represents a MOF with the highest gas uptakes and gas selectivities (CO2 over CH4 and N2) constructed by flexible ligands.

PMID:
23469758
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk