Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2013 Aug;110(8):2277-91. doi: 10.1002/bit.24889. Epub 2013 Mar 26.

Laser exposure of gold nanorods can increase neuronal cell outgrowth.

Author information

  • 1Biotactical Engineering, Industrial Research Institute Swinburne (IRIS), Faculty of Engineering and Industrial Science, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia.

Abstract

The usage of gold nanoparticles (Au NPs) in biological applications has risen significantly over the last 10 years. With the wide variety of chemical and biological functionalization available and their distinctive optical properties, Au NPs are currently used in a range of biological applications including sensing, labeling, drug delivery, and imaging applications. Among the available particles, gold nanorods (Au NRs) are particularly useful because their optical absorption can be tuned across the visible to near infrared region. Here, we present a novel application of Au NRs associated with low power laser exposure of NG108-15 neuronal cells. When cells were irradiated with a 780 nm laser, the average number of neurons with neurites increased. A similar stimulatory effect was observed for cells that were cultured with poly-(4-styrenesulfonic acid)-coated and silica-coated Au NRs. Furthermore, when the NG108-15 cells were cultured with both bare and coated Au NRs and then irradiated with 1.2-7.5 W/cm(2) at 780 nm, they showed a neurite length increase of up to 25 µm versus control. To the best of our knowledge, this effect has never been reported before. While the pathways of the stimulation is not yet clear, the data presented here demonstrates that it is linked to the absorption of light by the Au NRs. These initial results open up new opportunities for peripheral nerve regeneration treatments and for novel approaches to addressing central nervous system axons following spinal cord injury.

Copyright © 2013 Wiley Periodicals, Inc.

PMID:
23456616
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk