Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1990 Jun;172(6):3346-50.

Mutational analysis of the Shiga toxin and Shiga-like toxin II enzymatic subunits.

Author information

  • 1Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.

Abstract

The A-subunit polypeptides of Shiga toxin, the Shiga-like toxins (SLTs), and the plant lectin ricin inactivate eucaryotic ribosomes by enzymatically depurinating 28S rRNA. Comparison of the amino acid sequences of the members of the Shiga toxin family and ricin revealed two regions of significant homology that lie within a proposed active-site cleft of the ricin A chain. In previous studies, these conserved sequences of the SLT-I and ricin A subunits have been implicated as active sites. To establish the importance of these regions of homology, we used site-directed mutagenesis to alter the A-subunit sequences of two members of the Shiga toxin family. Substitution of an aspartic acid for glutamic acid 166 of the Slt-IIA subunit decreased the capacity of the polypeptides to inhibit protein synthesis at least 100-fold in a cell-free translation system. However, this mutation did not prevent the expression of immunoreactive, full-length Slt-IIA. In addition, SLT-II holotoxin containing the mutated A subunit was 1,000-fold less toxic to Vero cells. Finally, site-directed mutagenesis was used to delete sequences encoding amino acids 202 through 213 of the Shiga toxin A subunit. Although this deletion did not prevent holotoxin assembly, it abolished cytotoxic activity.

PMID:
2345150
[PubMed - indexed for MEDLINE]
PMCID:
PMC209145
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk