Send to:

Choose Destination
See comment in PubMed Commons below
Integr Biol (Camb). 2013 Apr;5(4):728-37. doi: 10.1039/c3ib20289e. Epub 2013 Feb 25.

Stress response of Caenorhabditis elegans induced by space crowding in a micro-column array chip.

Author information

  • 1Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.


Crowding stress has been reported to play an important role in affecting physiological behaviour. To study this process, a reliable analytical method under confined space is essential. In this work, we demonstrated a microfluidic approach for investigating physiological responses of C. elegans to confined spaces. The PDMS microfluidic chip consisting of arrays of micro-columns enabled us to mimic different crowding conditions by changing the intervals among micro-columns. C. elegans were transferred into this micro-column array and the subcellular distribution of DAF-16, which is a well-known transcription factor regulating different stress responses, was monitored for analysing the physiological responses to the confined spaces. We found that the worms exhibited a gradual increase in DAF-16 nuclear localization in the micro-column array with intervals from 200 μm to 40 μm. Moreover, the results showed that the absence of food and crowding stress could cooperate to promote increased DAF-16 nuclear localization. Finally, loss-of-function mutations in mec-4 and mec-10, which are amiloride-sensitive Na(+) channel genes expressed in all six gentle touch neurons, accelerated the velocity of DAF-16 nuclear localization, induced by confined space, revealing that mec-4/mec-10 were not required for this stress response. Thus, this device will provide a versatile, reliable and controllable platform for crowding stress studies.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk