Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Hematol. 2013 May;20(3):208-14. doi: 10.1097/MOH.0b013e32835f5a47.

Regulation of systemic iron homeostasis.

Author information

  • 1Duke University Medical Center, Durham, North Carolina 27710, USA. karin.finberg@duke.edu

Abstract

PURPOSE OF REVIEW:

The circulating peptide hepcidin modulates systemic iron balance by limiting the absorption of dietary iron and the release of iron from macrophage stores. Recent studies conducted in humans, animal models, and tissue culture systems have enhanced our understanding of the molecular mechanisms by which hepcidin levels are altered in response to iron stores, inflammation, and erythropoietic activity.

RECENT FINDINGS:

The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 play key, nonredundant roles in mediating hepcidin synthesis through the BMP signaling pathway. Actions of the hereditary hemochromatosis proteins HFE and transferrin receptor 2 may intersect with the BMP pathway. Hepcidin induction in response to inflammation requires cooperative BMP signaling. A variety of innate immune and infectious stimuli induce hepcidin expression. The hypoxia inducible factor pathway appears to suppress hepcidin indirectly through the capacity of erythropoietin to stimulate erythropoiesis.

SUMMARY:

Study of the molecular mechanisms underlying the regulation of hepcidin synthesis has revealed complex biology. Improved understanding of the signaling pathways involved in hepcidin regulation may contribute to improved therapeutic outcomes for patients with genetic and acquired disorders that impact systemic iron balance.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk