Send to:

Choose Destination
See comment in PubMed Commons below
Phys Chem Chem Phys. 2013 Apr 7;15(13):4651-5. doi: 10.1039/c3cp44555k.

The influence of electron injection and charge recombination kinetics on the performance of porphyrin-sensitized solar cells: effects of the 4-tert-butylpyridine additive.

Author information

  • 1Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.


The effects of the 4-tert-butylpyridine (TBP) additive in the electrolyte on photovoltaic performance of two push-pull porphyrin sensitizers (YD12 and YD12CN) were examined. Addition of TBP significantly increased the open-circuit voltage (VOC) for YD12 (from 550 to 729 mV) but it was to a lesser extent for YD12CN (from 544 to 636 mV); adding TBP also had the effect of reducing the short-circuit current density (JSC) slightly for YD12 (from 17.65 to 17.19 mA cm(-2)) but it led to a significant reduction for YD12CN (from 16.45 to 9.78 mA cm(-2)). The resulting power conversion efficiencies of the YD12 devices increase from 6.2% to 8.5% whereas those of the YD12CN devices decrease from 5.8% to 4.5%. Based on measurements of temporally resolved photoelectric transients of the devices and femtosecond fluorescence decays of thin-film samples, the poor performance of the YD12CN device in the presence of TBP can be understood as being due to the enhanced charge recombination, decreased electron injection, and a lesser extent of inhibition of the intermolecular energy transfer.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk