Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Pharm. 2013 Mar 25;446(1-2):87-99. doi: 10.1016/j.ijpharm.2013.01.055. Epub 2013 Feb 13.

Gene delivery into human cancer cells by cationic lipid-mediated magnetofection.

Author information

  • 1CSIR-Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500 007, Andhra Pradesh, India.

Abstract

In this study, a combination of magnetic nanoparticles (MNPs) together with cationic lipid N,N-di-n-hexadecyl-N,N-dihydroxyethylammonium chloride formulated with colipid cholesterol, upon magnetofection, enhanced DNA uptake into human glioblastoma-astrocytoma, epithelial-like cell line U-87 MG, hepatocellular carcinoma Hep G2, cervical cancer HeLa and breast cancer MDA-MB-231 cells. Having confirmed this, we monitored uptake of plasmid DNA mediated by ternary magnetoplexes by fluorescence microscopy, flow cytometry and reporter gene expression assays in the presence and absence of a magnetic field. Our observations clearly indicate enhanced transfection efficiency in vitro, upon magnetofection, in the presence of serum as seen from β-Gal reporter gene expression. The observed activity in serum suggests the suitability of MNPs for in vivo applications. Further, we measured the transverse relaxation time (T2) and obtained T2-weighted MRI images of treated U-87 MG cells. T2 determined for MNP-VP-Me22 and MNP-VP-Et22 corresponds to 22.6±0.8 ms and 36.0±2.1 ms, respectively, as compared to 47±1.7 ms for control, suggesting their applicability in molecular imaging. Our results collectively highlight the potential of lipid-based approach to augment magnetic-field guided-gene delivery using MNPs and additionally towards developing intracellular molecular probes for magnetic resonance imaging.

Copyright © 2013 Elsevier B.V. All rights reserved.

PMID:
23415875
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk