Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2013 Mar 13;5(5):1688-97. doi: 10.1021/am302738r. Epub 2013 Mar 4.

Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode.

Author information

  • 1Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112, USA.


Bismuth oxide (Bi2O3) decorated titania nanotube array (T-NT) composite materials were synthesized by a simple, yet versatile electrodeposition method. The effects of deposition current density and time on morphology evolution of the bismuth oxide phase were analyzed. It was found that an optimum deposition condition in terms of current density and time could be reached to achieve uniform and equiaxed crystal morphology of the deposited oxide phase. The morphology, shape, size distribution, and crystal structure of the bismuth oxide phase were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic techniques. The electrochemical capacitance of the T-NT/Bi2O3 composites was studied by conducting cyclic voltammetry and galvanostatic charge-discharge experiments. These studies indicated that the capacitance behavior of the composite material was dependent on the morphology and distribution of the bismuth oxide phase. The capacitance was greatly enhanced for the composite having equiaxed and uniformly distributed bismuth oxide particles. The maximum interfacial capacitance achieved in this study was approximately 430 mF cm(-2). Galvanostatic charge-discharge experiments conducted on the composite materials suggested stable capacitance behavior together with excellent capacitance retention even after 500 cycles of continuous charge-discharge operation.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk