Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Biochem Biophys. 2013 Jul;66(3):787-96. doi: 10.1007/s12013-013-9524-9.

Computational investigation of cancer-associated molecular mechanism in Aurora A (S155R) mutation.

Author information

  • 1Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.

Abstract

Centrosomes are the key-regulating element of cell cycle progression. Aberrations in their functional mechanism lead to several cancer-related disorders. Aurora A protein is a centrosome-associated protein that regulates the centriole duplication and its abberations are associated with multiple cases of aneuploidy and cancer-related disorders. S155R mutation in Aurora A is reported to induce cancer like phenotype and disrupt its binding with TPX2 protein. In this study, we have demonstrated the structural consequences of Aurora A S155R mutation and the atomic changes that influenced the loss of TPX2-binding affinity. Docking and molecular dynamics simulation results suggested significant loss in atomic contacts between mutant Aurora A and TPX2 protein. Further, we observed a notable changes in conformation of mutant Aurora A-TPX2 docked complex as compared to the native. Loss of binding affinity rendered the TPX2 domain free which then induced unfolding in its coiled region and enabled the overall expansion of mutant complex as compared to the native. The significant outcomes obtained from this study will facilitate in future cancer researches and in developing the potent drug therapies.

PMID:
23412841
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk