Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Rep. 2013 Feb 21;3(2):291-300. doi: 10.1016/j.celrep.2013.01.011. Epub 2013 Feb 9.

Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis.

Author information

  • 1Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.

Abstract

DNA methylation in mammals is highly dynamic during germ cell and preimplantation development but is relatively static during the development of somatic tissues. 5-hydroxymethylcytosine (5hmC), created by oxidation of 5-methylcytosine (5mC) by Tet proteins and most abundant in the brain, is thought to be an intermediary toward 5mC demethylation. We investigated patterns of 5mC and 5hmC during neurogenesis in the embryonic mouse brain. 5hmC levels increase during neuronal differentiation. In neuronal cells, 5hmC is not enriched at enhancers but associates preferentially with gene bodies of activated neuronal function-related genes. Within these genes, gain of 5hmC is often accompanied by loss of H3K27me3. Enrichment of 5hmC is not associated with substantial DNA demethylation, suggesting that 5hmC is a stable epigenetic mark. Functional perturbation of the H3K27 methyltransferase Ezh2 or of Tet2 and Tet3 leads to defects in neuronal differentiation, suggesting that formation of 5hmC and loss of H3K27me3 cooperate to promote brain development.

Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

PMID:
23403289
[PubMed - indexed for MEDLINE]
PMCID:
PMC3582786
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk