Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Anal Bioanal Chem. 2013 Apr;405(11):3859-69. doi: 10.1007/s00216-013-6738-z. Epub 2013 Feb 9.

Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array.

Author information

  • 1Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.


The electrochemical behavior of dopamine was examined under redox cycling conditions in the presence and absence of a high concentration of the interferent ascorbic acid at a coplanar, microelectrode array where the area of the generator electrodes was larger than that of the collector electrodes. Redox cycling converts a redox species between its oxidized and reduced forms by application of suitable potentials on a set of closely located generator and collector electrodes. It allows signal amplification and discrimination between species that undergo reversible and irreversible electron transfer. Microfabrication was used to produce 18 individually addressable, 4-μm-wide gold band electrodes, 2 mm long, contained in an array having an interelectrode spacing of 4 μm. Because the array electrodes are individually addressable, each can be selectively biased to produce an overall optimal electrochemical response. Four adjacent microbands were shorted together to serve as the collector, and were flanked on each side by seven microbands shorted as the generator (a ratio of 1:3.5 of electroactive area, respectively). This configuration achieved a detection limit of 0.454 ± 0.026 μM dopamine at the collector in the presence of 100 μM ascorbic acid in artificial cerebrospinal fluid buffer, concentrations that are consistent with physiological levels. Enhancement by surface modification of the microelectrode array to achieve this detection limit was unnecessary. The results suggest that the redox cycling method may be suitable for in vivo quantification of transients and basal levels of dopamine in the brain without background subtraction.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk