Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ann Biomed Eng. 2013 Jul;41(7):1505-15. doi: 10.1007/s10439-013-0751-4. Epub 2013 Feb 8.

A shell-based inverse approach of stress analysis in intracranial aneurysms.

Author information

  • 1Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA. jialu@engineering.uiowa.edu

Abstract

Predicting pressure induced wall stress in intracranial aneurysms continues to be of interest for aneurysm safety assessment. In quasi-static analysis, there are two distinct approaches that one may take, the forward approach and the inverse approach. The inverse approach starts from a deformed configuration and thus is naturally suited to image-based, patient-specific analysis. Early studies by the authors' team suggested that the inverse approach, in the context of estimating the wall stress in cerebral aneurysms, depends weakly on the material description. In this article, we present a population study to further demonstrate the inverse method, in particular, the remarkable feature of insensitivity to material properties. Twenty-six aneurysm models derived from patient-specific images were employed in the study. Wall stresses were predicted in both the inverse and forward approaches using three material models. Results showed that, while forward computation yielded up to ~100% stress difference between some materials, the inverse solutions stayed close across materials. The inverse method, in addition to being methodologically accurate in dealing with pre-deformations, has the added convenience of insensitivity to uncertainties in wall tissue properties. New insight into the stress-geometry relation was also discussed.

PMID:
23392863
[PubMed - indexed for MEDLINE]
PMCID:
PMC3679309
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk