Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Behav. 2013 Feb 17;110-111:213-20. doi: 10.1016/j.physbeh.2013.01.011. Epub 2013 Feb 4.

Metformin decreases meal size and number and increases c-Fos expression in the nucleus tractus solitarius of obese mice.

Author information

  • 1Department of Pharmacology, Korea University College of Medicine, Republic of Korea.

Abstract

Metformin is widely used to treat obese diabetics because of its beneficial effects on body weight, energy intake, and glucose regulation. However, it has not been investigated how oral metformin affects meal patterns, or whether the reduced food intake is associated with neuronal activation in the hindbrain. Accordingly, we investigated how orally administered metformin (150 or 300 mg/kg daily for 4 or 7 days) reduces body weight in obese mice on a high-fat diet by continuously measuring meal patterns, energy expenditure, and locomotor activity, and whether oral metformin (300 mg/kg daily for 3 days) increases c-Fos expression in the nucleus tractus solitarius (NTS) and area postrema. Furthermore, we determined whether oral metformin produces a conditioned taste aversion (CTA) in obese mice administered a single dose of metformin (75, 150, or 300 mg/kg, p.o.). Metformin (300 mg/kg daily for 7 days) reduced body weight and adiposity by decreasing nocturnal energy intake but did not significantly change energy expenditure or locomotor activity relative to vehicle, and it transiently decreased nocturnal meal size and reduced meal number throughout the experiments. Furthermore, metformin significantly increased c-Fos immunoreactivity within the NTS of obese mice compared to that in controls and pair-fed group, and induced a CTA at doses of 150 or 300 mg/kg. These results indicate that metformin-induced weight loss is associated with a sustained reduction in energy intake maintained by a reduction in meal size and number, and that oral administration of metformin causes visceral illness and neuronal activation in the NTS.

Copyright © 2013 Elsevier Inc. All rights reserved.

PMID:
23391573
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk