Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lipids Health Dis. 2013 Feb 4;12:10. doi: 10.1186/1476-511X-12-10.

Diverse captive non-human primates with phytanic acid-deficient diets rich in plant products have substantial phytanic acid levels in their red blood cells.

Author information

  • 1Department of Biochemistry and Molecular Biology, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089, USA.

Abstract

BACKGROUND:

Humans and rodents with impaired phytanic acid (PA) metabolism can accumulate toxic stores of PA that have deleterious effects on multiple organ systems. Ruminants and certain fish obtain PA from the microbial degradation of dietary chlorophyll and/or through chlorophyll-derived precursors. In contrast, humans cannot derive PA from chlorophyll and instead normally obtain it only from meat, dairy, and fish products.

RESULTS:

Captive apes and Old world monkeys had significantly higher red blood cell (RBC) PA levels relative to humans when all subjects were fed PA-deficient diets. Given the adverse health effects resulting from PA over accumulation, we investigated the molecular evolution of thirteen PA metabolism genes in apes, Old world monkeys, and New world monkeys. All non-human primate (NHP) orthologs are predicted to encode full-length proteins with the marmoset Phyh gene containing a rare, but functional, GA splice donor dinucleotide. Acox2, Scp2, and Pecr sequences had amino acid positions with accelerated substitution rates while Amacr had significant variation in evolutionary rates in apes relative to other primates.

CONCLUSIONS:

Unlike humans, diverse captive NHPs with PA-deficient diets rich in plant products have substantial RBC PA levels. The favored hypothesis is that NHPs can derive significant amounts of PA from the degradation of ingested chlorophyll through gut fermentation. If correct, this raises the possibility that RBC PA levels could serve as a biomarker for evaluating the digestive health of captive NHPs. Furthermore, the evolutionary rates of the several genes relevant to PA metabolism provide candidate genetic adaptations to NHP diets.

PMID:
23379307
[PubMed - indexed for MEDLINE]
PMCID:
PMC3571895
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk