Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2013 Mar 7;5(5):2045-54. doi: 10.1039/c2nr33576j. Epub 2013 Feb 1.

A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties.

Author information

  • 1Key Laboratory of the Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.


A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn(0.33)Co(0.67)CO(3) and Co(0.33)Mn(0.67)CO(3) microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo(2)O(4) and CoMn(2)O(4) quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn(2)O(4) pores than those of MnCo(2)O(4) are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g(-1), the resultant MnCo(2)O(4) and CoMn(2)O(4) quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g(-1), respectively. In particular, the MnCo(2)O(4) samples could deliver a reversible capacity as high as 610 mA h g(-1) even at a higher current density of 400 mA g(-1) with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo(2)O(4) microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li(+) insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk