Send to:

Choose Destination
See comment in PubMed Commons below
Phys Chem Chem Phys. 2013 Mar 14;15(10):3504-9. doi: 10.1039/c2cp43680a. Epub 2013 Jan 30.

Electrogenerated chemiluminescence and interfacial charge transfer dynamics of poly(3-hexylthiophene-2,5-diyl) (P3HT)-TiO2 nanoparticle thin film.

Author information

  • 1Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, USA.


We present electrogenerated chemiluminescence (ECL) and photoluminescence (PL) characteristics of poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films incorporated with monodisperse TiO(2) nanoparticles prepared using a hydrothermal reaction in the presence of oleylamine and oleic acid. The ECL turn-on potential decreases in the presence of TiO(2) nanocrystals, accompanied with an increase in ECL intensity. Only a minor ECL quantum efficiency decrease is obtained in the presence of <40 wt% TiO(2), indicating the formation of an effective interpenetrating network of TiO(2) and disordering of polymer packing to allow the ECL coreactant to transport through the film for efficient electroluminescence. In contrast, PL quenching increases with the weight percentage of TiO(2) and significant PL quenching is obtained when the P3HT film contains up to 80 wt% TiO(2) due to charge transfer. Polaron absorption after the photoinduced charge separation in the presence of 80 wt% TiO(2) nanoparticles is significantly enhanced with longer-lived lifetimes of >1000 ps in contrast to the neat P3HT film. The absorption of polarons created at the P3HT-TiO(2) interface is found to increase with the P3HT-TiO(2) interfacial area per unit volume.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk